High-intensity discharge lamps (HID lamps) are a type of electrical lamp which produces light by means of an electric arc between tungsten electrodes housed inside a translucent or transparent fused quartz or fused alumina arc tube. This tube is filled with both gas and metal salts. The gas facilitates the arc's initial strike. Once the arc is started, it heats and evaporates the metal salts forming a plasma, which greatly increases the intensity of light produced by the arc and reduces its power consumption. High-intensity discharge lamps are a type of arc lamp.
High-intensity discharge (HID) lamps make more visible light per unit of electric power consumed than fluorescent and incandescent lamps since a greater proportion of their radiation is visible light as opposed to heat.
Contents |
Various different types of chemistry are used in the arc tubes of HID lamps, depending on the desired characteristics of light intensity, correlated color temperature, color rendering index (CRI), energy efficiency, and lifespan. Varieties of HID lamp include:
The light-producing element of these lamp types is a well-stabilized arc discharge contained within a refractory envelope arc tube with wall loading in excess of 3 W/cm² (19.4 W/in²).
Mercury vapor lamps were the first commercially available HID lamps. Originally they produced a bluish-green light, but more recent versions can produce light with a less pronounced color tint. However, mercury vapor lamps are falling out of favor and being replaced by sodium vapor and metal halide lamps.
Metal halide and ceramic metal halide lamps can be made to give off neutral white light useful for applications where normal color appearance is critical, such as TV and movie production, indoor or nighttime sports games, automotive headlamps, and aquarium lighting.
Low-pressure sodium vapor lamps are extremely efficient. They produce a deep yellow-orange light and have an effective CRI of nearly zero; items viewed under their light appear monochromatic. This makes them particularly effective as photographic safe lights. High-pressure sodium lamps tend to produce a much whiter light, but still with a characteristic orange-pink cast. New color-corrected versions producing a whiter light are now available, but some efficiency is sacrificed for the improved color.
Like fluorescent lamps, HID lamps require a ballast to start and maintain their arcs. The method used to initially strike the arc varies: mercury vapor lamps and some metal halide lamps are usually started using a third electrode near one of the main electrodes while other lamp styles are usually started using pulses of high voltage.
Replacements for the toxic merc in the HID lamps have been investigated and are a matter of ongoing research. Experiments show promising results and widespread future applications are expected. [1]
HID lamps are typically used when high levels of light over large areas are required, and when energy efficiency and/or light intensity are desired. These areas include gymnasiums, large public areas, warehouses, movie theaters, football stadiums,[2] outdoor activity areas, roadways, parking lots, and pathways. More recently, HID lamps have been used in small retail and even residential environments because of advances in reduced lumen bulbs. Ultra-High Performance (UHP) HID lamps are used in LCD or DLP projection TV sets or projection displays as well.
HID lamps have made indoor gardening practical, particularly for plants that require high levels of direct sunlight in their natural habitat; HID lamps, specifically metal halide and high-pressure sodium, are a common light source for indoor gardens. They are also used to reproduce tropical intensity sunlight for indoor aquaria.
Most HID lamps produce significant UV radiation, and require UV-blocking filters to prevent UV-induced degradation of lamp fixture components and fading of dyed items illuminated by the lamp. Exposure to HID lamps operating with faulty or absent UV-blocking filters causes injury to humans and animals, such as sunburn and arc eye. Many HID lamps are designed so as to quickly extinguish if their outer UV-shielding glass envelope is broken.
Beginning in the early 1990s, HID lamps have been employed in motor vehicle headlamps. This application has met with mixed responses from motorists, who appreciate the improved nighttime visibility from HID headlamps but object to the glare they can cause. Internationalized European vehicle regulations require such headlamps to be equipped with lens cleaners and an automatic self-leveling system to keep the beams aimed correctly regardless of vehicle load and altitude, but no such devices are required on motorcycles, or in North America, where ECE regulations are inapplicable and inherently more glaring beam patterns are also permitted. The fitting of HID conversion kits (which include HID lamps that fit into original headlamp units in place of the original bulbs with no change to the headlamp's lens, reflector or housing) generally results in extremely high levels of glare, and is illegal throughout most of the world. However, complete halogen headlamp units can be replaced with complete HID headlamp units, provided that the replacement headlamp units comply with the applicable standards.[3][4][5][6][7][8][9]
HID lamps are used in high-performance bicycle headlamps as well as flashlights and other portable lights, because they produce a great amount of light per unit of power. As the HID lights use less than half the power of an equivalent tungsten-halogen light, a significantly smaller and lighter-weight power supply can be used.
HID lamps have also become common on many aircraft as replacements for traditional landing and taxi lights.
HID lamps are also used in lamps for underwater diving. The higher efficacy of HID lamps compared to halogen units means longer burn times and/or smaller batteries.
Factors of wear come mostly from on/off cycles versus the total on time. The highest wear occurs when the HID burner is ignited while still hot and before the metallic salts have recrystallized.
At the end of life, many types of high-intensity discharge lamps exhibit a phenomenon known as cycling. These lamps can be started at a relatively low voltage. As they heat up during operation, however, the internal gas pressure within the arc tube rises and a higher voltage is required to maintain the arc discharge. As a lamp gets older, the voltage necessary to maintain the arc eventually rises to exceed the voltage provided by the electrical ballast. As the lamp heats to this point, the arc fails and the lamp goes out. Eventually, with the arc extinguished, the lamp cools down again, the gas pressure in the arc tube is reduced, and the ballast can once again cause the arc to strike. The effect of this is that the lamp glows for a while and then goes out, repeatedly.
More sophisticated ballast designs detect cycling and give up attempting to start the lamp after a few cycles. If power is removed and reapplied, the ballast will make a new series of startup attempts.
Sometimes the quartz tube containing mercury can explode in a UHP lamp.[10] When that happens, up to 30 mg of mercury vapor is released into the atmosphere. This quantity of mercury is potentially toxic, but the main hazard from broken lamps is glass cuts, and occasional exposure to broken lamps is not expected to have adverse effects. Philips recommends the use of a mercury vacuum cleaner, ventilation or respiratory protection, eye protection, and protective clothing when dealing with broken lamps. Mercury lamps also require special waste disposal, depending on location.[11]